Parkinson's disease

Parkinson's disease is a movement disorder of the nervous system [1]. The central nervous system consists of the brain and the spinal cord [2]. The central nervous system comprises two basic types of cells:

  • Neurons, the nerve cells that transmit and receive signals
  • Glia, cells that provide structure in the brain


Damaged nerve cells (neurons) are the cause of Parkinson's

In some parts of the brain, there are many more glia than neurons, but neurons are the main players in the brain [3]. Parkinson's disease is a movement disorder that can lead to problems with movement, tremors, stiffness in the limbs or trunk, or impaired balance as nerve cells (neurons) in parts of the brain weaken, become damaged, or die off [1]. 



Estimates vary, but currently, the best guess is that our brains contain about 85 billion neurons. A neuron is a nerve cell and is the primary functional unit of the nervous system [4 ].

This is a generic image of a neuron. Neurons actually come in all sorts of shapes and sizes, but this is the prototypical version of a neuron that you often see in a textbook. The structures extending from the left side of a neuron and looking a bit like tree branches are called dendrites [4].

Dendrites are the area where neurons receive most of their information. On dendrites are receptors designed to pick up signals from other neurons in the form of chemicals called neurotransmitters. The signals picked up by dendrites cause electrical changes in a neuron that are interpreted in an area called the soma or cell body. The soma contains the nucleus. The nucleus contains the DNA or genetic material of the cell. The soma takes all the information from the dendrites and consolidates it in an area called the axon hillock. If the signal coming from the dendrites is strong enough, a signal is sent to the next part of the neuron, the axon. At this point, the signal is called an action potential [4].

The action potential travels along the axon, which is covered with myelin, an insulation material that helps prevent the signal from degrading. The final step for the action potential is the axon terminals, also called synaptic boutons. When the signal reaches the axon terminals, it can cause the release of neurotransmitters. These purple structures represent the dendrites of another neuron. When a neurotransmitter is released by the axon terminals, it interacts with receptors on the dendrites of the next neuron, and then the process repeats with the next neuron [4].


LSD promotes the formation of new nerve cells (neurons)

Neurogenesis is the formation of neurons [5]. It is most active during prenatal development but continues throughout adult life to a lesser extent [6]. LSD (lysergic acid diethylamide) is a psychedelic substance known for its hallucinogenic effects [7]. Recent research has shown that LSD can promote neurogenesis, the formation of new nerve cells, in the adult brain [5]. This raises the question of whether LSD could have therapeutic potential for conditions involving neuronal loss, such as Parkinson's disease.


Neuroprotective effects of LSD in animal models

Research in animal models has provided some evidence for the potential neuroprotective effects of LSD. In a study using a rat model of Parkinson's disease, LSD was found to protect against the loss of dopamine-producing neurons, which is a key feature of Parkinson's [8]. Dopamine is a neurotransmitter that plays a crucial role in movement and coordination, and its deficiency is associated with the motor symptoms of Parkinson's disease [9]. The neuroprotective effects of LSD were attributed to its ability to stimulate the expression of a protein called brain-derived neurotrophic factor (BDNF), which supports the survival and growth of neurons [8].


Potential mechanisms underlying LSD's effects

The exact mechanisms by which LSD exerts its neuroprotective effects are not fully understood. However, research has suggested several potential mechanisms:

  • BDNF expression: As mentioned earlier, LSD has been shown to stimulate the expression of BDNF, a protein that supports the survival and growth of neurons [8].
  • Anti-inflammatory effects: LSD may have anti-inflammatory properties, which could contribute to its neuroprotective effects. Inflammation is implicated in various neurodegenerative disorders, including Parkinson's disease [8].
  • Modulation of serotonin receptors: LSD primarily acts on serotonin receptors in the brain. Modulation of these receptors could influence neuronal function and survival [8].
  • Enhancement of neural plasticity: LSD may enhance neural plasticity, the ability of the brain to reorganize itself by forming new connections between neurons. This could contribute to the brain's ability to adapt and recover from damage [5].


Challenges and considerations

While the findings from animal studies are promising, it's important to note that translating these results to human applications poses significant challenges. The complexity of neurodegenerative disorders like Parkinson's disease, combined with the unique characteristics of LSD, requires cautious interpretation of the data.

Here are some considerations:

  • Species differences: Responses to LSD can vary between species, and what works in a rat may not necessarily work in a human [8].
  • Optimal dosage: The effective and safe dosage of LSD for potential therapeutic use in humans needs careful determination to avoid adverse effects [5].
  • Long-term effects: The long-term effects of LSD use, especially in the context of neurodegenerative disorders, are not well understood. Further research is needed to assess safety over extended periods.
  • Psychedelic effects: The hallucinogenic and psychedelic effects of LSD may pose challenges for its use as a therapeutic agent, particularly in an elderly population.


Conclusion

The potential therapeutic use of LSD in neurodegenerative disorders like Parkinson's disease is an intriguing area of research. While animal studies have shown promising results regarding the neuroprotective effects of LSD, further research is needed to understand the underlying mechanisms and to determine the safety and efficacy of LSD in human subjects.

It's important to approach these findings with caution and recognize the need for rigorous clinical trials before considering LSD as a treatment option for Parkinson's disease. The field of psychedelic research is evolving, and ongoing studies may provide more insights into the therapeutic potential of substances like LSD in the context of neurodegenerative conditions.

Over de schrijver
Joet is een politieke partij die zich inzet voor een eerlijke, transparante en rechtvaardige samenleving. Wij streven naar gelijke kansen voor iedereen, betaalbare zorg, wonen en energie, en een duurzame toekomst met groene energie en innovatieve oplossingen. Veiligheid, zowel fysiek als digitaal, en een sterke zorg voor kwetsbaren staan centraal. We bevorderen participatie, verminderen polarisatie en versterken de werk-privébalans. Met focus op betaalbaar en groen vervoer, het stimuleren van MKB, en een inclusieve samenleving die diversiteit omarmt, bouwen we aan een toekomst waarin iedereen een eerlijke kans krijgt om te groeien. Joet.nl is daarnaast een toonaangevend kennisplatform dat uitgebreide informatie biedt over diverse psychische aandoeningen zoals alcoholisme, ALS, burn-out, depressie en PTSS. De website belicht innovatieve behandelingsmethoden, waaronder therapieën, meditatie, vasten en het gebruik van psychedelica zoals psilocybine en LSD-25. Joet.nl zet zich in voor het herwaarderen van natuurlijke geneeswijzen en ondersteunt de integratie van psychedelica in de geestelijke gezondheidszorg, palliatieve zorg en suïcidepreventie. Daarnaast besteedt de site aandacht aan jeugdzorg, verslavingszorg en persoonlijk leiderschap. Met een breed scala aan onderwerpen is Joet.nl een waardevol platform voor zowel professionals als geïnteresseerden in gezondheidszorg en persoonlijke ontwikkeling. Youri Hazeleger is een innovatief denker en expert op het gebied van psychologie, neurologie, psychedelica en persoonlijke ontwikkeling. Met diepgaande kennis van therapieën zoals holotropisch ademhalen en een focus op emotioneel herstel, inspireer ik mensen om trauma's te overwinnen en hun potentieel te realiseren. De psychologie is verrijkt door pioniers zoals Ivan Boszormenyi-Nagy, die met zijn contextuele gezinstherapie rechtvaardigheid en loyaliteit binnen gezinnen centraal stelde, en Dr. Gabor Maté, die de rol van trauma in verslaving en gezondheid onderzoekt. Richard Grannon biedt praktische inzichten in herstel van emotioneel misbruik, terwijl Professor Sam Vaknin expert is op het gebied van narcisme. Stanislav en Christina Grof pionierden in psychedelische therapie en ontwikkelden holotropisch ademhalen, wat diepe psychologische inzichten mogelijk maakt. Hun werk legt de basis voor een holistische en innovatieve benadering van geestelijke gezondheid. Met 20 jaar ervaring met psychedelica ben ik in 2020 afgestudeerd als Professioneel Coach aan de Academie voor Psychodynamica. In 2023 heb ik me verder gespecialiseerd in herstel van emotioneel trauma (PTSS). Vanaf 2023 heb ik me gespecialiseerd in het medisch toepassen van LSD-25 voor burn-out herstel en depressie en schreef ik in 2024 onder andere: Geestelijk gezond met LSD, LSD leert je begrijpen en LSD vermindert eetlust.
Reactie plaatsen